Tutorial 9. FOL inference
Exercise sheet
Natural deduction
Exercises 2.,4.,6. are homework
Show the following in natural deduction for FOL:
- $\forall x\mathsf{Happy}(x)\land \forall x\mathsf{Fulfilled}(x)\vdash \forall x(\mathsf{Happy}(x)\land \mathsf{Fulfilled}(x))$
- $\exists x(\mathsf{Happy}(x)\lor \mathsf{Fulfilled}(x))\vdash \exists x\mathsf{Happy}(x)\lor\exists x\mathsf{Fulfilled}(x)$
- $\forall x\neg\mathsf{Happy}(x)\vdash \neg \exists x\mathsf{Happy}(x)$
- $\exists x\forall y\mathsf{Friend}(x,y)\vdash \forall y\exists x\mathsf{Friend}(x,y)$
- $\neg\exists x\mathsf{Happy}(x)\vdash \forall x\neg \mathsf{Happy}(x)$
- $\neg\forall x\mathsf{Sad}(x)\vdash \exists x\neg \mathsf{Sad}(x)$
Solution
Unification
For the following pairs of formulas, determine whether there are unifications. If there is one, give it, if there is not explain why not.
- $\mathsf{Between}(Munich,y,z)$ and $\mathsf{Between}(x,Milan,Rome)$
- $\mathsf{Between}(x,Rome,Rome)$ and $\mathsf{Between}(Rome,y,x)$
- $\mathsf{Knows}(Mary,x)\land \neg\mathsf{Happy}(x)$ and $\mathsf{Knows}(x,x)\land\neg\mathsf{Happy}(Jane)$
- $\neg\mathsf{Happy}(x)\lor \mathsf{Knows}(Mary,x)$ and $\mathsf{Knows}(x,x)\land\neg\mathsf{Happy}(Mary)$
Solution
1.
$[x\mapsto Munich,y\mapsto Milan, z\mapsto Rome]$
2.
$[x\mapsto Rome,y\mapsto Rome, z\mapsto Rome]$
3.
Not possible. With $[x\mapsto Mary]$ we have $\neg\mathsf{Happy}(Mary)$ on one side and $\neg\mathsf{Happy}(Jane)$ on the other side. With $[x\mapsto Jane]$ we have $\mathsf{Knows}(Mary, Jane)$ on one side and $\mathsf{Knows}(Jane,Jane)$ on the other side.
4.
Not possible. The logical form of the two sentences would be different regardless of how we substitute terms. The main connective on the left is disjunction and on the right is conjunction.
CNF
Exercises 2.,4. are homework
Transform the following formulas into FOL CNF. Give your step-by-step transformation (you may perform several similar transformations in a single step).
- $\forall x\exists y (\mathsf{Friend}(x,y)\to \exists z\neg (\mathsf{Happy}(z)\land\mathsf{Fulfilled}(z)))$
- $\forall x(\forall y \mathsf{Friend}(x,y)\to \forall z\neg (\mathsf{Happy}(z)\land\mathsf{Fulfilled}(z)))$
- $\mathsf{Happy}(x)\to \neg\forall x(\mathsf{Friend}(x,y)\land \neg\mathsf{Friend}(y,x))$
- $\neg \exists x(\mathsf{Happy}(x)\land(\neg\mathsf{Fulfilled}(x)\land\mathsf{Knows}(x,x)))$
Solution
1.
- Start here: $\forall x\exists y(\mathsf{Friend}(x,y)\to\exists z\neg(\mathsf{Happy}(z)\land\mathsf{Fulfilled}(z)))$
- Convert the conditional: $\forall x\exists y(\neg\mathsf{Friend}(x,y)\lor\exists z\neg(\mathsf{Happy}(z)\land\mathsf{Fulfilled}(z)))$
- Use de Morgan rule on the right: $\forall x\exists y(\neg\mathsf{Friend}(x,y)\lor\exists z(\neg\mathsf{Happy}(z)\lor\neg\mathsf{Fulfilled}(z)))$
- Skolemize the inner existential: $\forall x\exists y(\neg\mathsf{Friend}(x,y)\lor(\neg\mathsf{Happy}(f(x))\lor\neg\mathsf{Fulfilled}(f(x))))$
- Skolemize the outer existential: $\forall x(\neg\mathsf{Friend}(x,g(x))\lor(\neg\mathsf{Happy}(f(x))\lor\neg\mathsf{Fulfilled}(f(x))))$
- Drop the universal: $\neg\mathsf{Friend}(x,g(x))\lor\neg\mathsf{Happy}(f(x))\lor\neg\mathsf{Fulfilled}(f(x))$
2.
- Start here: $\forall x(\forall y\mathsf{Friend}(x,y)\to\forall z\neg(\mathsf{Happy}(z)\land\mathsf{Fulfilled}(z)))$
- Convert the conditional: $\forall x(\neg\forall y\mathsf{Friend}(x,y)\lor\forall z\neg(\mathsf{Happy}(z)\land\mathsf{Fulfilled}(z)))$
- Use de Morgan rule on the right: $\forall x(\neg\forall y\mathsf{Friend}(x,y)\lor\forall z(\neg\mathsf{Happy}(z)\lor\neg\mathsf{Fulfilled}(z)))$
- Convert negated universal on the left: $\forall x(\exists y\neg\mathsf{Friend}(x,y)\lor\forall z(\neg\mathsf{Happy}(z)\lor\neg\mathsf{Fulfilled}(z)))$
- Skolemize the existential: $\forall x(\neg\mathsf{Friend}(x,f(x))\lor\forall z(\neg\mathsf{Happy}(z)\lor\neg\mathsf{Fulfilled}(z)))$
- Drop the universal quantifiers: $\neg\mathsf{Friend}(x,f(x))\lor\neg\mathsf{Happy}(z)\lor\neg\mathsf{Fulfilled}(z)$
3.
- Start here: $\mathsf{Happy}(x)\to\neg\forall x(\mathsf{Friend}(x,y)\land\neg\mathsf{Friend}(y,x))$
- Relabel variable on the left: $\mathsf{Happy}(z)\to\neg\forall x(\mathsf{Friend}(x,y)\land\neg\mathsf{Friend}(y,x))$
- Convert the conditional: $\neg\mathsf{Happy}(z)\lor\neg\forall x(\mathsf{Friend}(x,y)\land\neg\mathsf{Friend}(y,x))$
- Convert negated universal: $\neg\mathsf{Happy}(z)\lor\exists x\neg(\mathsf{Friend}(x,y)\land\neg\mathsf{Friend}(y,x))$
- Use de Morgan rule on the right: $\neg\mathsf{Happy}(z)\lor\exists x(\neg\mathsf{Friend}(x,y)\lor\neg\neg\mathsf{Friend}(y,x))$
- Remove double negation: $\neg\mathsf{Happy}(z)\lor\exists x(\neg\mathsf{Friend}(x,y)\lor\mathsf{Friend}(y,x))$
- Skolemize the existential: $\neg\mathsf{Happy}(z)\lor\neg\mathsf{Friend}(f,y)\lor\mathsf{Friend}(y,f)$
4.
- Start here: $\neg\exists x(\mathsf{Happy}(x)\land(\neg\mathsf{Fulfilled}(x)\land\mathsf{Knows}(x,x)))$
- Convert negated existential: $\forall x\neg(\mathsf{Happy}(x)\land(\neg\mathsf{Fulfilled}(x)\land\mathsf{Knows}(x,x)))$
- Use de Morgan rule: $\forall x(\neg\mathsf{Happy}(x)\lor\neg(\neg\mathsf{Fulfilled}(x)\land\mathsf{Knows}(x,x)))$
- Use de Morgan again: $\forall x(\neg\mathsf{Happy}(x)\lor(\neg\neg\mathsf{Fulfilled}(x)\lor\neg\mathsf{Knows}(x,x)))$
- Remove double negation: $\forall x(\neg\mathsf{Happy}(x)\lor(\mathsf{Fulfilled}(x)\lor\neg\mathsf{Knows}(x,x)))$
- Drop the universal quantifier: $\neg\mathsf{Happy}(x)\lor\mathsf{Fulfilled}(x)\lor\neg\mathsf{Knows}(x,x)$
Resolution
Use the resolution rule to justify the following inferences:
- $\forall x(\mathsf{Lord}(x)\to \mathsf{Happy}(x)),\neg\mathsf{Happy}(Byron)\vDash \neg\mathsf{Lord}(Byron)$
- $\neg\exists x(\mathsf{Lord}(x)\land \mathsf{Happy}(x)),\forall x\exists y(\mathsf{Friend}(x,y)\to \mathsf{Happy}(x))\vDash \neg\exists x(\mathsf{Lord}(x)\land \exists y(\mathsf{Friend}(x,y)))$
Solution
Research
a)
How can we handle the equality $=$ in natural deduction for FOL? Give an simple sample derivation in the system, which shows how the rules work.
b)
What are the corresponding rules in resolution systems called?
Discussion
Some researchers, especially those interested in the conceptual foundations of logic, argue that resolution-based proof systems are not “really” proof systems because they don’t directly model human-style reasoning. Do you agree or disagree? Substantiate your answer with an argument.