Lecture 4. Boolean algebra
SlidesInfo
Here you can find the lecture slides.
You can use them to follow along during the lecture and to go through the material again after.
Feel free to ask questions during the lecture!!
Technical info
You can use the arrow keys to navigate through the slides, or alternatively, click the little arrows on the slides themselves.
Pressing the F-key while the slides are selected, puts them in fullscreen. You can quit fullscreen by pressing ESC.
There are more the slides can do, find out under https://revealjs.com/ .
∀I
Logical methods for AI
Lecture 4
Boolean algebra
This work is licensed under CC BY 4.0
-
Truth values
Ideas
- Binary logic: true vs false
- True = 1 and False = 0 $$\mathbf{2}=\Set{0,1}$$
- Truth is relative:
- it's raining in $s$ $\Rightarrow$ $RAIN$ is true
- it's not raining in $s$ $\Rightarrow$ $RAIN$ is false
Functions
- Function = assignment $f:X\to Y$
- $f(a,b,c,\dots)=x$
Non-Functions
- Function = assignment $f:X\to Y$
-
Boolean algebra
Boolean algebra
- Truth-functions: $f:\Set{0,1}^n\to\Set{0,1}$
- Idea: Truth-functions = logical operators
Boolean NOT
Boolean AND
Boolean OR
Boolean XOR
Negation laws | ||
---|---|---|
Complementation 1 | $x\times -x=0$ | |
Complementation 2 | $x+ -x=1$ | |
Involution | $--x=x$ | |
De Morgan 1 | $-(x+y)=-x\times -y$ | |
De Morgan 2 | $-(x\times y)=-x+-y$ |
Conjunction laws | ||
---|---|---|
Idempotence $\times$ | $x\times x=x$ | |
Commutativity $\times$ | $x\times y=y\times x$ | |
Associativity $\times$ | $x\times(y\times z)=(x\times y)\times z$ | |
Identity $\times$ | $x\times 1=x$ | |
Annihilation $\times$ | $x\times 0=0$ |
Disjunction laws | ||
---|---|---|
Idempotence $+$ | $x+x=x$ | |
Commutativity $+$ | $x+y=y+x$ | |
Associativity $+$ | $x+(y+z)=(x+y)+z$ | |
Identity $+$ | $x+0=x$ | |
Annihilation $+$ | $x+ 1=1$ |
Interaction laws | ||
---|---|---|
Distributivity 1 | $x\times(y+ z)=(x\times y)+(x\times z)$ | |
Distributivity 2 | $x+(y\times z)=(x+ y)\times(x+ z)$ | |
Absorption 1 | $x+(x\times y)=x$ | |
Absorption 2 | $x\times(x+ y)=x$ |
-
Boolean models
Idea
- Boolean algebra = model of situations
- Bivalence = modelling assumption
Language
$$A::=p_i\mid \neg A\mid (A\land A)\mid(A\lor A)$$Valuations
$$\nu:\Set{p_i}\to\Set{0,1}$$Recursion
$$\nu(\neg A):=-\nu(A)$$ $$\nu((A\land B)):=\nu(A)\times \nu(B)$$ $$\nu((A\lor B)):=\nu(A)+ \nu(B)$$-
Applicat10ns
Boolean inference
- Valuations = situations
- $[A]=\Set{\nu:\nu(A)=1}$
- Valid inference: $$P_1,P_2,\dots\vDash C\Leftrightarrow [P_1]\cap [P_2]\cap \dots\subseteq [C]$$
Logical laws
$$x+(x\times y)=x\Rightarrow [A\lor(A\land B)]=[A]$$ $$\Rightarrow A\lor (A\land B)\vDash A\qquad A\vDash A\lor (A\land B)$$Logical laws
$$x\leq x+y \Rightarrow [A]\subseteq [A\lor B]$$ $$\Rightarrow A\vDash A\lor B$$Binary arithmetic
- Binary numbers: $$101=1\times 2^2+0\times 2^1+1\times 2^0=5$$
- Binary addition: $$\phantom{+\ }010$$ $$\underline{+\ 011}$$ $$=\ 101$$
Boolean arithmetic
- $z=x+y$ $$x=\dots x_3x_2x_1$$ $$y=\dots y_3y_2y_1$$ $$z=\dots z_3z_2z_1$$
- Binary addition: $$z_i=(x_i\oplus y_i)\oplus (x_{i-1}\times y_{i-1})$$