Lecture 3. Formal languages
SlidesInfo
Here you can find the lecture slides.
You can use them to follow along during the lecture and to go through the material again after.
Feel free to ask questions during the lecture!!
Technical info
You can use the arrow keys to navigate through the slides, or alternatively, click the little arrows on the slides themselves.
Pressing the F-key while the slides are selected, puts them in fullscreen. You can quit fullscreen by pressing ESC.
There are more the slides can do, find out under https://revealjs.com/ .
∀I
Logical methods for AI
Lecture 3
Formal languages
This work is licensed under CC BY 4.0
-
Formal languages
Ideas
- Formal language = mathematical model of language
- Logic: model of logical form
- mathematical rigor
- AI (KR): talk to computer
- programming languages
- knowledge bases (KBs) and ontologies
- low level (code) vs high level (NLP)
-
Set theory
Notation
- Set = abstract collection of elements
- $x\in X$
- $x\notin X$
- $X=\Set{a_1,\dots,a_n}$
- $X=\Set{x:x\text{ is \dots}}$
- $\mathcal{L}$ is a set
-
Alphabets
Strings
- Members of $\mathcal{L}$ are strings of symbols
- Constructed from alphabet $\Sigma$
- $\Sigma=\Set{0,1,2,3,4,5,6,7,8,9}$
- Numerals: $0, \dots, 9,10, \dots, 19, 20, \dots$
- Strings are "meaningless"
Non-logical
- Propositional variables:
$p,q,r,\dots,RAINY,SUNNY,\dots$
- Constants:
$a,b,c,\dots,Jim, Jane, \dots$
Non-logical
- Functions:
$f,g,h,\dots,FatherOf, \dots$
- Predicates:
$P,Q,R,\dots,BLUE, GREATER,\dots$
Logical
- Propositional connectives:
$\neg,\sim$ | not | |
$\land,\&$ | and | |
$\lor$ | or | |
$\to,\Rightarrow,\supset$ | if …, then … | |
$\leftrightarrow,\Leftrightarrow,\equiv$ | iff |
Logical
- More propositional connectives:
$\square,\lozenge$ | necessity, possibility | |
$K,B$ | knowledge, belief | |
$G,F,H,P$ | past, future | |
$P,O$ | permission, obligation | |
$!$ | announcements | |
$?$ | questions |
Logical
- Quantifiers:
$\forall$ | (for) all | |
$\exists$ | (for) some, there exists | |
$(\forall:P)$ | (for) all $P$'s | |
$\exists_3$ | there are 3 |
Auxilliaries
- Commas, parentheses, ...
-
Grammar
Induction
- Propositional language: $$\Sigma=\Set{p_1,\dots,p_n,\neg,\land,\lor,\to,\leftrightarrow,(,)}$$
- Stepwise definition of $\mathcal{L}$-formulas
- $p_1,\dots,p_n\in \mathcal{L}$
- $A,B\in \mathcal{L}\Rightarrow \neg A,(A\land B),(A\lor B),(A\to B),(A\leftrightarrow B)\in \mathcal{L}$
- Nothing else is in $\mathcal{L}$
BNF
-
Examples
Formalization
The letter isn’t in the left drawer $\leadsto$ $\neg p$
The letter is in the left and in the right drawer $\leadsto$ $(p\land q)$
The letter isn't in the left drawer, but also not in the right $\leadsto$ $(\neg p\land \neg q)$
The letter is in the left or in the right drawer $\leadsto$ $(p\lor q)$
The letter is neither in the left nor in the right drawer $\leadsto$ $(\neg p\land \neg q)$
If the letter is in the left drawer, it’s not in the right $\leadsto$ $(p\to \neg q)$
The letter is in the left drawer, if it’s not in the right one $\leadsto$ $(\neg q\to p)$
The letter's only in the left drawer, if it’s not in the right $\leadsto$ $(p\to \neg q)$
The letter is in the left drawer just in case it’s not in the right one $\leadsto$ $(p\leftrightarrow \neg q)$
FOL
$\langle const\rangle ::= a \mid b\mid \dots \qquad$ $\qquad\langle var\rangle ::= x \mid y\mid \dots $
$\langle unop\rangle ::= \neg\qquad $ $\qquad\langle binop\rangle ::= \land\mid\lor\mid\to\mid\leftrightarrow$
$$\langle quant\rangle ::= \forall\mid\exists$$ $$\langle term\rangle::= \langle const\rangle\mid\langle variable\rangle\mid f^n(\langle term\rangle_1,\dots,\langle term\rangle_n)$$ $$\langle pred\rangle ::= P \mid Q\mid \dots $$ $$\langle atom\rangle::= P^n(\langle term\rangle_1,\dots\langle term\rangle_n)$$ $$\langle fml\rangle::=\langle atom\rangle\mid\langle unop\rangle\langle fml\rangle\mid (\langle fml\rangle\langle binop\rangle \langle fml\rangle)\mid \langle quant\rangle \langle var\rangle\langle fml\rangle$$Examples
Not everybody handsome is smart $\leadsto$ $\neg\forall x(H(x)\to S(x))$
Everybody who’s smart is handsome $\leadsto$ $\forall x(S(x)\to H(x))$
A person who’s smart is handsome $\leadsto$ $\forall x(S(x)\to H(x))$
Someone who’s smart is handsome $\leadsto$ $\forall x(S(x)\to H(x))$
Everybody’s smart and handsome $\leadsto$ $\forall x(S(x)\land H(x))$
Examples
Somebody who’s smart exists $\leadsto$ $\exists x S(x)$
There’s somebody who’s not smart $\leadsto$ $\exists x\neg S(x)$
Somebody’s smart and somebody’s handsome $\leadsto$ $\exists xS(x)\land \exists xH(x)$
Somebody’s smart and handsome $\leadsto$ $\exists x(S(x)\land H(x))$
Nobody’s both smart and handsome $\leadsto$ $\neg\exists x(S(x)\land H(x))$
Somebody, who’s smart, is handsome $\leadsto$ $\exists x(S(x)\land H(x))$
Examples
He’s handsome $\leadsto$ $H(x)$
She’s handsome and smart $\leadsto$ $H(x)\land S(x)$
He’s handsome and he’s smart $\leadsto$ $H(x)\land S(y)$
He’s handsome and she’s smart $\leadsto$ $H(x)\land S(y)$
That’s a smart and handsome person $\leadsto$ $H(x)\land S(x)$
-
Parsing
Idea
- Parsing = splitting formulas
- Basically: reading formulas
Parsing tree
Unique readability
-
Applications
- Natural language processing (NLP):
- Symbolic NLP
- Chinese room
- Knowledge representation (KR):
- Precision and reliability
- Restrictions of FOL