Lecture 10. Many-valued logics
SlidesInfo
Here you can find the lecture slides.
You can use them to follow along during the lecture and to go through the material again after.
Feel free to ask questions during the lecture!!
Technical info
You can use the arrow keys to navigate through the slides, or alternatively, click the little arrows on the slides themselves.
Pressing the F-key while the slides are selected, puts them in fullscreen. You can quit fullscreen by pressing ESC.
There are more the slides can do, find out under https://revealjs.com/ .
∀I
Logical methods for AI
Lecture 10
Many-valued logics
This work is licensed under CC BY 4.0
-
Many-valued logics
Background
- Classical assumption: bivalence with $0,1$
- Many AI applications conflict with that.
- We look at some many-valued logics.
Syntax
$$\langle prop\rangle::= p_1\mid \dots\mid p_n$$ $$\langle fml\rangle::=\langle prop\rangle\mid\neg\langle fml\rangle\mid (\langle fml\rangle\land \langle fml\rangle)\mid (\langle fml\rangle\lor \langle fml\rangle)$$-
Kleene/Łukasiewicz logics
Motivation
- What's the truth-value of: $$\mathsf{RAIN\_TOMORROW}?$$
- Proposal: indeterminate $i$.
- Open world assumption
- SQL null
3-valued valuations
$$\nu:\langle prop\rangle\to \Set{0,i,1}$$Recursive truth
$$\nu(\neg A)=-\nu(A)$$ $$\nu(A\land B)=\nu(A)\times \nu(B)$$ $$\nu(A\lor B)=\nu(A)+\nu(B)$$Valid inference
$$[A]:=\Set{\nu:\nu(A)=1}$$ $$P_1,P_2,\dots\vDash C\Leftrightarrow [P_1]\cap [P_2]\cap \dots\subseteq [C]$$Changes?
- Complementation 1: $x\times -x=0$ $$i\times -i=i\times i=i$$
- Complementation 2: $x+ -x=1$ $$i+ -i=i+i=i$$
Changes?
- No logical truths: $$\nvDash \mathsf{RAIN\_TOMORROW}\lor\neg\mathsf{RAIN\_TOMORROW}$$
- Open world assumption!
Contradictions
- No contradictions: $$x\times - x\neq 1$$ $$1\times - 1=1\times 0=0$$ $$i\times - i=i\times i=i$$ $$0\times - 0=0\times 1=0$$
- $\leadsto$ paraconsistent logics
Kleene
- $A\to B$ "means" $\neg A\lor B$
- But: $$\nvDash \mathsf{RAIN\_TOMORROW}\to \mathsf{RAIN\_TOMORROW}$$
- Just set: $$\nu(\mathsf{RAIN\_TOMORROW})=i$$
Łukasiewicz
-
Fuzzy logics
Vaguenes
- What's the truth-value of $\mathsf{WARM}$?
- Fuzzy:
- At 30℃ close to 1
- At 15℃ close to 0.5
- At 0℃ close to 0
Fuzzy systems
- Rules like: $$\mathbf{IF}\ \mathsf{WARM}\lor\mathsf{HUMID}\ \mathbf{ THEN }\ \mathsf{POWER}$$
- Turn the power on to the extend that it's warm and humid
- Big in Japan!
- AC
- Autofocus
- Self-driving trains
Fuzzy valuations
$$\nu:\langle prop\rangle\to [0,1]$$Fuzzy truth-functions
$$f_\neg(x)=1-x$$ $$f_\land(x,y)=min(x,y)$$ $$f_\lor(x,y)=max(x,y)$$Recursive values
$$\nu(\neg A)=1-\nu(A)$$ $$\nu(A\land B)=min(\nu(A),\nu(B))$$ $$\nu(A\lor B)=max(\nu(A),\nu(B))$$Valid inference
Modelled after fuzzy rules:
$$P_1,P_2,\dots\vDash C$$ $$\Leftrightarrow$$ $$\text{for all }\nu, min(\nu(P_1),\dots,\nu(P_n))\leq \nu(C)$$Outlook
- Many many-valued logics:
- 3-valued Logic of Pardox
- 4-valued FDE
- 8-valued, 16-valued logics,...
- Fuzzy logic is a huge field (especially in Japan).