Lecture 11. Logic and probability
SlidesInfo
Here you can find the lecture slides.
You can use them to follow along during the lecture and to go through the material again after.
Feel free to ask questions during the lecture!!
Technical info
You can use the arrow keys to navigate through the slides, or alternatively, click the little arrows on the slides themselves.
Pressing the F-key while the slides are selected, puts them in fullscreen. You can quit fullscreen by pressing ESC.
There are more the slides can do, find out under https://revealjs.com/ .
∀I
Logical methods for AI
Lecture 11
Logic and probability
This work is licensed under CC BY 4.0
-
Logic and probability
Concepts
- So far: deductive logic
- Deductive validity: premisses necessitate conclusion
- Now: inductive logic
- Inductive validity: premisses make conclusion (more) likely
-
Models of probability
Background
- Probability of $E$: how likely is $E$
- Interpretations of probability
- Objectivists: objective chance
- Subjectivists: subjective degree of belief
Probabilities
A function $Pr:\mathcal{L}\to\mathbb{R}$, s.t.:
- $Pr(A)\geq 0$
- $Pr(A)=1$, if $\vDash A$
- $Pr(A\lor B)=Pr(A)+Pr(B)$, whenever $\vDash\neg(A\land B)$
Laws
$$Pr(\neg A)=1-Pr(A)$$- $\vDash \neg(A\land \neg A)$
- $Pr(A\lor\neg A)=Pr(A)+Pr(\neg A)$
- $\vDash A\lor\neg A$
- $Pr(A\lor\neg A)=1$
- $1=Pr(A)+Pr(\neg A)$
Fair die
$$Pr(\mathsf{RESULT}_i)=\frac{1}{6}\text{, for }i=1,\dots,6$$ $$Pr(\mathsf{RESULT}_i\land \mathsf{RESULT}_j)=0\text{, for all }i\neqj$$Calculation
$$Pr(\mathsf{R}_2\lor \mathsf{R}_4)=\frac{1}{3}$$- Inclusion-exclusion $$Pr(A\lor B)=Pr(A)+Pr(B)-Pr(A\land B)$$
- Calculation: $$Pr(\mathsf{R}_2\lor \mathsf{R}_4)=Pr(\mathsf{R}_2)+Pr(\mathsf{R}_4)-Pr(\mathsf{R}_2\land \mathsf{R}_4)$$ $$=\frac{1}{6}+\frac{1}{6}-0$$
- Probabilities are not recursive.
-
Probability truth-tables
Example
$$\langle prop\rangle::=\mathsf{RAIN}\mid\mathsf{SUN}$$- $\nu_1(\mathsf{RAIN})=1$ and $\nu_1(\mathsf{SUN})=1$
- $\nu_2(\mathsf{RAIN})=1$ and $\nu_2(\mathsf{SUN})=0$
- $\nu_3(\mathsf{RAIN})=0$ and $\nu_3(\mathsf{SUN})=1$
- $\nu_4(\mathsf{RAIN})=0$ and $\nu_4(\mathsf{SUN})=0$
Weights
- $\nu_1(\mathsf{RAIN})=1$ and $\nu_1(\mathsf{SUN})=1$: $m(\nu_1)=0.5$
- $\nu_2(\mathsf{RAIN})=1$ and $\nu_2(\mathsf{SUN})=0$: $m(\nu_2)=0.3$
- $\nu_3(\mathsf{RAIN})=0$ and $\nu_3(\mathsf{SUN})=1$: $m(\nu_3)=0.2$
- $\nu_4(\mathsf{RAIN})=0$ and $\nu_4(\mathsf{SUN})=0$: $m(\nu_4)=0$
Tables
Example
$$Pr(\mathsf{RAIN}\lor\neg\mathsf{SUN})=m(\nu_1)+m(\nu_2)+m(\nu_4)=0.5+0.3+0=0.8$$Dice
-
Conditional probabilities
Formula
$$Pr(A\mid B)=\frac{Pr(A\land B)}{Pr(B)}$$Conjunction
$$Pr(A\land B)=Pr(A\mid B)P(B)$$- Still not recursive!
Independence
$$A,B\text{ are independent}\Leftrightarrow Pr(A\mid B)=Pr(A)$$- For $A,B$ independent: $Pr(A\land B)=Pr(A)\times Pr(B)$
-
Inductive validity
Background
- Related to statistical inference.
- Not as standardized, much variety.
- Bayesian inference.
Increase of firmness
$$ P_1,P_2,\dots\mid\approx_{Pr} C \Leftrightarrow Pr(C|P_1\land P_2\land \dots)\geq Pr(C)$$Strong inference
$$ P_1,P_2,\dots\mid\overset{!}{\approx} C \Leftrightarrow Pr(C|P_1\land P_2\land\dots)\gg Pr(C),$$Alt: Threshold view
$$ P_1,P_2,\dots\mid\overset{!}{\approx} C \Leftrightarrow Pr(C|P_1\land P_2\land \dots)\geq \epsilon>0.5.$$Explosion?
-
$$Pr(A\mid B)=\frac{Pr(A\land B)}{Pr(B)}$$
- Undefined if $Pr(B)=0$
- What to do?
- Options:
- Explosion $\Rightarrow$ $Pr(A\mid B)=1$
- Caution $\Rightarrow$ $Pr(A\mid B)=0$
Inductive Laws 1
- If $P_1,P_2,\dots\vDash C$, then $P_1,P_2,\dots\mid\approx C$.
Inductive Laws 2
- $C\vDash P_1\land P_2\land \dots\Rightarrow P_1\land P_2\land \dots\mid\approx C$
- DN-model
- Important!!
-
Inductive (in)validities
Enumerative induction
- All observed swans are white. So all swans are white.
- $P(a_1),P(a_2),\dots\mid\overset{!}{\approx}\forall xP(x)$
- Theorem!
Linda
Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations. Which is more probable?
- Linda is a bank teller.
- Linda is a bank teller and is active in the feminist movement.