Browse course

Lecture 2. Valid inference

Slides

∀I

Logical methods for AI

Lecture 2

Valid inference

https://forms.gle/JiXXM9eysAZaJMja9

Valid inference

Correctness

  • Valid inference = "good" inference
  • Not: simple, clear, precise, ... $\Rightarrow$ rhetoric
  • Validity vs fallacies:
    • If it is sunny, Jan is cycling. Jan is cycling. Therefore, it is sunny.
    • If it is sunny, Jan is cycling. It is sunny. Therefore, Jan is cycling.
  • What's the difference?

Hypothetically

  • All pigs fly. Maddy is a pig. So, Maddy flies.
  • If the premises are true, then the conclusion is true.
  • Possibility: Premises are false!
Definition:
An inference is valid iff the conclusion is true if (hypothetically) the premises are true

Always

  • Deduction = premises guarantee conclusion
  • $P_1, P_2, \dots\vDash C$
  • Either it rained last night or the car is dry, the car is not dry $\vDash$ It rained last night

Mostly

  • Induction = premises make likely conclusion
  • $P_1, P_2, P_1, P_2, \dots\stackrel{!}{\mid\approx} C$
  • 80% of 20k voters support strict laws $\stackrel{!}{\mid\approx}$ 80% of all support strict laws

Formalization

Logical form

  • If it rains, the street is wet, it rains $\vDash$ The street is wet
  • If it's sunny, the street is wet, it's sunny $\vDash$ The street is wet
  • If pigs fly, Santa brings presents, pigs fly $\vDash$ Santa brings presents

(MP) If $A$, then $B$; $A$ $\vDash$ $B$

Propositional

  • Sentences $\leadsto A, B, C, \dots$
  • Not $\leadsto \neg$
  • And $\leadsto \land$
  • Or $\leadsto \lor$
  • If ..., then ... $\leadsto~\to$

(MP) $A\to B, A\vDash B$

Quantified

  • Predicates $\leadsto P(x), Q(x), R(x,y), \dots$
  • Names $\leadsto a,b,c, \dots$
  • All $\leadsto \forall$
  • Some $\leadsto \exists$

(UI) $\forall xP(x)\vDash P(a)$

(EG) $R(a,b)\vDash \exists xR(a,x)$

Deductive logic

Features

  • indefeasible
  • general
  • certain

Methods

  • Model = possible reasoning scenario
  • $A$ is true in a model
  • $[A]$ set(!) of all models
  • $[A]\cap [B]$ = interesection
  • $[A]\subseteq [B]$ = subset
Definition:
$P_1,P_2,\dots\vDash C$ iff $[P_1]\cap [P_2]\cap\dots\subseteq [C]$

Example

Definition:
$P_1,P_2,\dots\vDash C$ iff $[P_1]\cap [P_2]\cap\dots\subseteq [C]$
  • $A\land B\vDash A$
  • $[A\land B]=[A]\cap [B]$
  • $[A\land B]\subseteq [A]$

Example

Definition:
$P_1,P_2,\dots\vDash C$ iff $[P_1]\cap [P_2]\cap\dots\subseteq [C]$
  • $A\lor B,A\nvDash \neg B$
  • $A$ true, $B$ true
  • countermodel

Inductive logic

Features

  • defeasible
  • particular
  • likely

Methods

  • Probability = likelihood of truth $(0,\dots,1)$
  • $Pr(A)\approx$ in how many situations is $A$ true
  • $Pr(A|B)\approx$ in how many situations where $B$ is true is $A$ true
  • $Pr(A|B)=\frac{Pr(A\land B)}{Pr(B)}$
Definition:
$P_1,P_2,\dots\mid\approx C$ iff $Pr(C|P_1\land P_2\land \dots)>Pr(C)$

Example

Definition:
$P_1,P_2,\dots\mid\approx C$ iff $Pr(C|P_1\land P_2\land \dots)>Pr(C)$
  • $A\land B\mid\approx A$
  • $Pr(A|A\land B)=1$
  • $Pr(A|A\land B)\geq Pr(A)$

Monotonicity

  • $P_1,P_2,\dots\vDash C\Rightarrow Q,P_1,P_2,\dots\vDash C$
  • $P_1,P_2,\dots\mid\approx C\nRightarrow Q,P_1,P_2,\dots\mid\approx C$
  • defeasible vs indefeasible

Thanks!


Highlights
Powered by   reveail.js